factor$27195$ - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

factor$27195$ - перевод на Английский

STATISTICAL METHOD USED TO DESCRIBE CORRELATION THROUGH FEWER POSSIBLY LATENT VARIABLES
Factor analysis (in marketing); Factor Analysis; Multi-factorial; Factor loadings; Factorial analysis; Higher-order factor analysis; Principal factor analysis; Factor loading; Factor weight; Factor analyses; Statistical factor analysis
  • ^2=h^2_a</math>. If another data vector <math>\mathbf{z}_b</math> were plotted, the cosine of the angle between <math>\mathbf{z}_a</math> and <math>\mathbf{z}_b</math> would be <math>r_{ab}</math> : the <math>(a,b)</math>-entry in the correlation matrix. (Adapted from Harman Fig. 4.3)<ref name="Harman"/>

factor      
v. factor; factoor, agent; grootste gemene deler (wiskunde)
factor analysis         
factoranalyse (analyse van statistieken)
factor of safety         
FACTOR BY WHICH AN ENGINEERED SYSTEM'S CAPACITY IS INCREASED OVER THE EXPECTED REQUIREMENT TO ENSURE SAFETY IN THE FACE OF ERROR OR UNCERTAINTY
Safety factor; Overbuilt; Design margin; Factor and Margin of Safety; Margin of safety (engineering)
veiligheidsfactor

Определение

factor analysis
¦ noun Statistics a process in which the values of observed data are expressed as functions of a number of possible causes to determine which are most important.

Википедия

Factor analysis

Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved latent variables. The observed variables are modelled as linear combinations of the potential factors plus "error" terms, hence factor analysis can be thought of as a special case of errors-in-variables models.

Simply put, the factor loading of a variable quantifies the extent to which the variable is related to a given factor.

A common rationale behind factor analytic methods is that the information gained about the interdependencies between observed variables can be used later to reduce the set of variables in a dataset. Factor analysis is commonly used in psychometrics, personality psychology, biology, marketing, product management, operations research, finance, and machine learning. It may help to deal with data sets where there are large numbers of observed variables that are thought to reflect a smaller number of underlying/latent variables. It is one of the most commonly used inter-dependency techniques and is used when the relevant set of variables shows a systematic inter-dependence and the objective is to find out the latent factors that create a commonality.